

© Coinspect 2025 1 / 23

BΔLT
Smart Contract Audit

Version: v250730 Prepared for: JxLabs July 2025

Security Assessment

1. Executive Summary
2. Summary of Findings

2.3 Solved issues & recommendations

3. Scope
4. Assessment

4.1 Security assumptions
4.2 Decentralization
4.3 Testing
4.4 Code quality

5. Detailed Findings
BΔLT-001 - No test coverage for contracts

© Coinspect 2025 2 / 23

BΔLT-002 - Missing lastCheckIn update in
registerInheritance may lead to premature inheritance
claims
BΔLT-003 - Fee calculation rounds to zero for small
deposit amounts
BΔLT-004 - Reentrancy risk when registering an
inheritance
BΔLT-005 - Commission wallet cannot be updated
BΔLT-006 - Missing zero address validation for heir
parameter
BΔLT-007 - Unbounded arrays can lead to gas
exhaustion

6. Disclaimer

© Coinspect 2025 3 / 23

1. Executive Summary
In July, 2025, JXLabs engaged Coinspect to perform a Smart Contract Audit of
BΔLT. The objective of the engagement was to evaluate the security of the smart
contracts.

The BΔLT protocol is a decentralized application on the RSK blockchain that
allows users to create time-locked digital inheritance vaults, enabling the
automated transfer of RBTC to a designated heir after a defined period of user
inactivity.

Solved Caution Advised Resolution Pending

High
1

High
0

High
0

Medium
1

Medium
0

Medium
0

Low
3

Low
0

Low
0

No Risk
2

No Risk
0

No Risk
0

Total

7
Total

0
Total

0

https://jxlabs.xyz/
https://coinspect.com/

© Coinspect 2025 4 / 23

2. Summary of Findings
This section provides a concise overview of all the findings in the report grouped
by remediation status and sorted by estimated total risk.

2.3 Solved issues & recommendations

These issues have been fully fixed or represent recommendations that could
improve the long-term security posture of the project.

Id Title Risk

BΔLT-001 No test coverage for contracts High

BΔLT-002 Missing lastCheckIn update in registerInheritance may
lead to premature inheritance claims Medium

BΔLT-003 Fee calculation rounds to zero for small deposit
amounts Low

BΔLT-004 Reentrancy risk when registering an inheritance Low

BΔLT-005 Commission wallet cannot be updated Low

BΔLT-006 Missing zero address validation for heir parameter None

BΔLT-007 Unbounded arrays can lead to gas exhaustion None

© Coinspect 2025 5 / 23

3. Scope
The scope was set to be the repository:

https://github.com/JXLabsOK/BALT_SmartContracts at commit
39ae582e885734f900db02c2f924712804509a20.

https://github.com/JXLabsOK/BALT_SmartContracts

© Coinspect 2025 6 / 23

4. Assessment
This report presents the security assessment of the BΔLT protocol, a set of
Solidity smart contracts designed to facilitate the transfer of digital assets post-
mortem or upon prolonged user inactivity. The system is intended for deployment
on the RSK blockchain. It comprises two main smart contracts: InheritanceVault
and InheritanceFactory.

The core component, InheritanceVault, acts as an individual time-locked escrow.
A user, designated as the testator, can create a vault, deposit RBTC, and name an
heir. The funds are released to the heir only after a pre-defined inactivityPeriod
has elapsed since the testator's last interaction (performCheckIn). The testator
retains the ability to cancel the arrangement and withdraw their funds at any time.

The InheritanceFactory contract serves as a discovery and deployment
mechanism, allowing users to create their own InheritanceVault instances and
providing a public registry of all created vaults. A protocol fee is collected upon
the initial deposit and transferred to a designated commissionWallet.

The protocol enables a "dead man's switch" functionality for on-chain assets. The
primary workflow is initiated when a user interacts with the InheritanceFactory to
deploy a personal InheritanceVault contract, specifying an inactivityPeriod.

The contract does not enforce a strict time window during which the testator
must check in. The testator may perform a check-in at any time, even long after
the inactivityPeriod has passed, as long as the heir has not yet claimed the
inheritance. Additionally, the testator retains the unilateral ability to cancel the
inheritance and reclaim the escrowed funds at any point prior to the release,
regardless of the elapsed inactivity period. This design places full control in the
hands of the testator until the exact moment the inheritance is claimed.

The operational flow proceeds as follows:

1. Vault Creation: A testator calls createInheritanceVault on the factory, which
deploys a new InheritanceVault contract. The testator's address and the
chosen inactivity period are permanently stored in the new vault.

2. Inheritance Registration: The testator then calls the registerInheritance
function on their newly created vault. This transaction must include the RBTC
to be placed in escrow and specifies the heir's address. A 0.5% commission
on the deposited amount is immediately transferred to the commissionWallet.

3. Activity Proof: To prevent the premature release of funds, the testator must
periodically call performCheckIn. This action resets the inactivity timer.

© Coinspect 2025 7 / 23

4. Claim by Heir: If the inactivityPeriod passes without a check-in from the
testator, the claimInheritance function becomes callable by the designated
heir, who can then withdraw the entire balance of the contract.

5. Cancellation by Testator: At any point before the inheritance is claimed, the
testator can execute cancelInheritance to nullify the agreement and reclaim
all funds held within the vault.

The system relies on block.timestamp as the source of time for tracking inactivity.

4.1 Security assumptions

For this assessment, Coinspect made the following assumptions:

1. The addresses for the testator and the heir are correct and controlled by the
intended individuals.

2. The integrity and availability of the underlying RSK blockchain are trusted.

3. The block.timestamp is considered a sufficiently reliable source of time for
the defined inactivityPeriod. The protocol assumes that minor timestamp
manipulation by RSK miners will not be significant enough to compromise the
intended logic.

4. The entity controlling the commissionWallet is trusted to manage the
collected fees appropriately.

4.2 Decentralization

The protocol's design involves specific roles with distinct, centralized privileges
within the scope of each InheritanceVault.

Testator: This role holds significant authority over an individual vault. The
testator is the only party who can register the inheritance, perform check-ins,
and unilaterally cancel the vault to reclaim funds. These privileges are secured
by msg.sender checks.

Heir: The heir is a passive recipient with a single privilege: the ability to claim
the inheritance, conditional upon the testator's inactivity.

Protocol Owner: There is an implicit protocol owner role embodied by the
controller of the commissionWallet. This address is set at the time of the
InheritanceFactory deployment and is immutable for all subsequently created
vaults. This entity's sole privilege is the receipt of protocol fees.

© Coinspect 2025 8 / 23

Ownership: The InheritanceFactory contract itself has no administrative owner
with special privileges after deployment. Each InheritanceVault is effectively
co-owned by the testator and the heir, with the testator holding dominant
control until the inactivity condition is met.

Multisig: The protocol does not implement any multisignature scheme. The
commissionWallet could be a multisig address, which would decentralize control
over protocol fees. Coinspect considers that for a production system,
employing a multisig for the commissionWallet would be a prudent measure to
mitigate single-point-of-failure risks associated with a single private key. Users
should be aware that control of this wallet resides with an external entity.

4.3 Testing

At the time of review, no tests were provided for the smart contracts. The
absence of a test suite limits confidence in the correctness of the system,
especially under edge cases or adversarial conditions. It is strongly recommended
to implement tests to validate the expected behavior of the system before
advancing to the production phase.

4.4 Code quality

Documentation: Functions, contracts and events lack comprehensive natspec
documentation. Key functions like registerInheritance and claimInheritance
would benefit from @param, @return, and @dev tags to explicitly describe their
parameters, return values, and intended behavior.

Readability: The code is straightforward and easy to follow. The use of an enum
for Status (Active, Released, Cancelled) significantly improves readability and
makes the state machine logic explicit. Variable names are clear and
descriptive.

Flows: The logical flows are well-defined. State transitions are managed
through the inheritanceStatus variable and validated using require statements,
which helps prevent improper function execution. For instance, an inheritance
cannot be claimed if it has already been Cancelled or Released.

© Coinspect 2025 9 / 23

5. Detailed Findings

BΔLT-001
No test coverage for contracts

Status

Solved

Resolution

Fixed

Risk
High

Impact
High
Likelihood
High

Location

BALT_SmartContracts/contracts/InheritanceVault.sol

BALT_SmartContracts/contracts/InheritanceFactory.sol

Description

Neither the InheritanceFactory nor InheritanceVault contracts have any test
coverage, leaving critical functionality untested and increasing the risk of
undiscovered bugs that could lead to fund loss or unintended behavior.

Coinspect considers the absence of tests to pose a significant operational
and security risk, particularly for protocols handling real user funds. While
issues arising from missing tests may not occur immediately, the likelihood of

© Coinspect 2025 10 / 23

introducing critical bugs during future development is high, and the impact of
such bugs could be severe.

Recommendation

Implement a comprehensive test suit that validates all critical paths, access
control logic, failure scenarios and edge cases.

Status

Fixed on commit 18564f9fceee5fdef7c8fc02d517dabdcd9a083b.

Tests were added to the project.

However, Coinspect identified that the following test description is
misleading:

it("should allow the testator to cancel before inactivity", async () =>
{
 await
expect(vault.connect(testator).cancelInheritance()).to.not.be.reverted;
});

The test states "testator can cancel before inactivity" but the smart contract
allows testator to cancel at any time as long as the heir has not claimed the
inheritance.

© Coinspect 2025 11 / 23

BΔLT-002
Missing lastCheckIn update in
registerInheritance may lead to premature
inheritance claims

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
Medium
Likelihood
Medium

Location

BALT_SmartContracts/contracts/InheritanceVault.sol

Description

The lastCheckIn timestamp is not updated when the registerInheritance
function is called, allowing the heir to prematurely claim the inheritance if the
inactivity period has already elapsed since contract deployment.

The lastCheckIn timestamp is initialized in the constructor and later updated
via performCheckIn, but it remains unchanged when registerInheritance is
called.

If there is a significant time gap between vault creation and inheritance
registration, the heir might be able to claim the inheritance immediately after
registration if the inactivity period has already elapsed from the constructor
timestamp.

© Coinspect 2025 12 / 23

Coinspect considers this issue to have a medium likelihood, especially for
users who pre-deploy vaults and fund them later. The impact is medium, as it
undermines the intended time-lock mechanism and may lead to unexpected
fund claims.

Recommendation

Update the lastCheckIn timestamp when the registerInheritance function is
called.

Status

Fixed on commit d938c1e827961d7cafdecdc1b56df70fd8647a49.

The lastCheckIn variable is now updated when registering an inheritance.

© Coinspect 2025 13 / 23

BΔLT-003
Fee calculation rounds to zero for small
deposit amounts

Status

Solved

Resolution

Fixed

Risk
Low

Impact
Low
Likelihood
Low

Location

BALT_SmartContracts/contracts/InheritanceVault.sol

Description

The commission fee calculation in the registerInheritance function rounds
down to zero when the deposit amount is less than 200, bypassing the fee
payment to the commission wallet.

function registerInheritance(address _heir) public payable {
 //...
 uint fee = (msg.value * 5) / 1000; // 0.5% commission
 uint netAmount = msg.value - fee;
 //...
}

Coinspect considers this to be a low likelihood and low impact issue. While
the financial implications are minimal due to the extremely small amounts
involved, it still represents a deviation from expected behavior.

© Coinspect 2025 14 / 23

Recommendation

Enforce a minimum fee or set a minimum deposit amount to ensure the
commission logic is always executed as intended.

Status

Fixed on commit d4adb5b2329a809ab4a4a3e933cb3a0eba018969.

The JXLabs team added two checks to enforce minimum deposit amounts
and non-zero fees.

Coinspect identified that the first require statement checking fee > 0 is
redundant. The subsequent check netAmount >= MIN_DEPOSIT already ensures
that the deposit is sufficient to generate a non-zero fee, making the explicit
fee check unnecessary.

© Coinspect 2025 15 / 23

BΔLT-004
Reentrancy risk when registering an
inheritance

Status

Solved

Resolution

Fixed

Risk
Low

Impact
Low
Likelihood
Low

Location

BALT_SmartContracts/contracts/InheritanceVault.sol

Description

The registerInheritance function performs an external call to the commission
wallet before updating storage variables, leading to a reentrancy risk.

The external call occurs before setting heir and inheritanceAmount storage
values, violating the checks-effects-interactions pattern.

function registerInheritance(address _heir) public payable {
 //...
 (bool sent,) = commissionWallet.call{value: fee}("");
 require(sent, "Commission transfer failed");

 heir = _heir;
 inheritanceAmount = netAmount;

 emit InheritanceRegistered(testator, heir, inheritanceAmount,

© Coinspect 2025 16 / 23

inactivityPeriod);
}

In this contract the threat is minimal. Only the designated testator can invoke
registerInheritance, and the commissionWallet is assumed to be a trusted
address.

Coinspect considers both the likelihood and impact of this issue to be low.
However, adhering to the checks-effects-interactions pattern remains a best
practice for secure and maintainable code.

Recommendation

Follow the checks-effects-interactions pattern by updating all storage
variables before making external calls. Move the commission wallet transfer
to the end of the function after setting the heir and inheritance amount.

Status

Fixed on commit 22b06f02e4817178693c733273bf44eed3fbd838.

The function now performs the external call after updating the relevant
variables.

© Coinspect 2025 17 / 23

BΔLT-005
Commission wallet cannot be updated

Status

Solved

Resolution

Fixed

Risk
Low

Impact
Low
Likelihood
Low

Location

BALT_SmartContracts/contracts/InheritanceFactory.sol

Description

The commissionWallet address is set in the deployment of the
InheritanceFactory contract and cannot be updated, creating operational
inflexibility if the commission wallet needs to be changed.

Additionally, the constructor does not validate that the _commissionWallet
parameter is a non-zero address. If a zero address is mistakenly provided, all
commission payments will be irreversibly lost upon vault creation.

Once deployed, the factory contract will permanently route all commission
payments to the initially configured address. If the commission wallet is
compromised, the private keys are lost, or the organization needs to update
the receiving address for operational reasons, the is no way to update it. This
could lead to a permanent loss of protocol revenue or the need to redeploy
the factory contract entirely.

© Coinspect 2025 18 / 23

Coinspect considers both the likelihood and impact of this issue to be low. It
is unlikely that the commission wallet will require frequent changes, and no
funds are directly at risk as long as the wallet remains controlled by the
intended party.

Recommendation

Use a multisig wallet with enough signers and a secure threshold as the
commissionWallet to enable controlled key management and minimize the risk
of permanent fund loss. Include a zero address check in the constructor to
prevent misconfiguration.

Status

Fixed on commit dc241d09ab1fd0796351d503e11eb0a2813b023e

The JXLabs team added a check to prevent the misconfiguration of the
commissionWallet.

However, deploy script currently contains a hardcoded EOA address for the
commission wallet. JXLabs has confirmed they will replace this hardcoded
address with a multisig address before production deployment

© Coinspect 2025 19 / 23

BΔLT-006
Missing zero address validation for heir
parameter

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Location

BALT_SmartContracts/contracts/InheritanceVault.sol

Description

The registerInheritance function does not validate that _heir is not the zero
address, which could result in inheritance funds being permanently lost. Since
inheritance can only be registered once and the heir cannot be changed, this
would make the funds unrecoverable.

Recommendation

Add a check to validate that _heir is not the zero address.

© Coinspect 2025 20 / 23

Status

Fixed on commit 764492280e1e609b6c9c9206a1217539c17d3510.

© Coinspect 2025 21 / 23

BΔLT-007
Unbounded arrays can lead to gas
exhaustion

Status

Solved

Resolution

Acknowledged

Risk
None

Impact
Recommendation
Likelihood
_

Location

BALT_SmartContracts/contracts/InheritanceFactory.sol

Description

Both the allVaults array and the arrays within the vaultsByTestator mapping
grow unbounded, making the getAllVaults and getVaultsByTestator functions
consume more and more gas until they exceed block gas limits and become
unusable.

Recommendation

Remove both the allVaults array and the arrays within vaultsByTestator
mapping. Consider using a double mapping structure for vaultsByTestator.
Use event indexing to retrieve all created vaults when needed, as the
VaultCreated event provides the necessary information.

© Coinspect 2025 22 / 23

Status

Acknowledged.

The team acknowledged the gas exhaustion concern but considers the
practical risk negligible given their expected usage patterns. They stated the
arrays serve a useful tracking purpose and remain open to migrating to event-
based tracking if future growth requires it.

© Coinspect 2025 23 / 23

6. Disclaimer
The contents of this report are provided "as is" without warranty of any kind.
Coinspect is not responsible for any consequences of using the information
contained herein.

This report represents a point-in-time and time-boxed evaluation conducted
within a specific timeframe and scope agreed upon with the client. The
assessment's findings and recommendations are based on the information, source
code, and systems access provided by the client during the review period.

The assessment's findings should not be considered an exhaustive list of all
potential security issues. This report does not cover out-of-scope components
that may interact with the analyzed system, nor does it assess the operational
security of the organization that developed and deployed the system.

This report does not imply ongoing security monitoring or guaranteeing the
current security status of the assessed system. Due to the dynamic nature of
information security threats, new vulnerabilities may emerge after the assessment
period.

This report should not be considered an endorsement or disapproval of any
project or team. It does not provide investment advice and should not be used to
make investment decisions.

